Mladeck, M. H. \& Nowacki, W. (1964). Helv. Chim. Acta, 47, 1280-1285.
Nowacki,W.\& MLADECK, M.H.(1961). Chimia, 15,531-532.
Pauling, L. (1949). Proc. Natl. Acad. Sci. Wash, 35, 495-499.
Pauling. L. (1960). The Nature of the Chemical Bond. 3rd ed. S. 224. Ithaca: Cornell Univ. Press.
Powell, R. E. \& Eyring, H. (1943). J. Amer. Chem. Soc. 65, 648-654.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Stewart, J. M. (1967). Crystal Structure Calculations System, X-RAY-67. Computer Science Center, Univ. of Maryland, and Research Computer Laboratory, Univ. of Washington.
Tables of Interatomic Distances and Configuration in Molecules and Ions, Supplement 1956-1959 (1965). S. 22s. London: The Chemical Society.
Tuinstra, F. (1967). Structural Aspects of the Allotropy of Sulphur and Other Divalent Elements, S. 26. Delft: Uitgeverij Waltman.

The Crystal Structure of Rubidium Tetrachromate, $\mathbf{R b}_{\mathbf{2}} \mathbf{C r}_{\mathbf{4}} \mathbf{O}_{\mathbf{1 3}}$

By Percy Löfgren
Institute of Inorganic and Physical Chemistry, University of Stockholm, Box 6801, S-113 86 Stockholm, Sweden

(Received 6 April 1973; accepted 29 April 1973)

Abstract

The crystal structure has been determined and refined to a final R value of 0.038 from 2089 independent reflexions registered with a diffractometer (Mo $K \alpha$ radiation). The space group is $P 2_{1} / c$ (No. 14) with cell constants $a=17.624$ (2),$b=7.688$ (2), $c=9.492$ (2) $\AA, \beta=91.95^{\circ}(1), V=1285 \AA^{3}$, and $Z=4$. The structure contains $\mathrm{Cr}_{4} \mathrm{O}_{13}^{2-}$ ions composed of four CrO_{4} tetrahedra joined by shared corners. The $\mathrm{Cr}-\mathrm{O}$ (bridge) distances are in the range $1.691-1.846 \AA$, mean value $1.77 \AA$. They are significantly longer than the $\mathrm{Cr}-\mathrm{O}$ (non-bridging) distances, ranging from $1.576-1 \cdot 621$, mean value $1.61 \AA$. The $\mathrm{Cr}-\mathrm{O}-\mathrm{Cr}$ angles exhibit great variation: $147 \cdot 2,139 \cdot 3$, and $120 \cdot 5^{\circ}$. The two crystallographically independent rubidium ions are each irregularly coordinated to eleven oxygen atoms with Rb -Odistances in the range $2 \cdot 88-3 \cdot 47 \AA$. The $\mathrm{Cr}-\mathrm{O}$ distances and the conformation of the $\mathrm{Cr}_{4} \mathrm{O}_{13}^{2-}$ ions are compared with those observed in other related chromium compounds.

Introduction

Chromium oxides and chromates have long been studied at this Institute. A review of the early work in this field has been given by Wilhelmi (1966a). Subsequent studies within this program by the present author have been concerned with the crystal structures of various polychromates. Theconditions of formation of the alkali polychromates have been thoroughly analysed by Schreinemakers \& Filippo (1906). The methods described by these authors were adapted to the preparation of rubidium polychromates. The results of crystalstructure studies on two modifications of $\mathrm{Rb}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ ($C 2 / c$ and $P 2_{1} / n$ respectively) have been described in previous articles (Löfgren \& Waltersson, 1971 ; Löfgren, 1971a). A preliminary note on the crystal structures of $\mathrm{Rb}_{2} \mathrm{Cr}_{3} \mathrm{O}_{10}$ and $\mathrm{Rb}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ has also been published (Löfgren, 1971b).

Experimental

Rubidium tetrachromate was prepared by adding 55 g chromium trioxide to a hot solution containing 2.7 g rubidium dichromate in 45 ml water. Dark red prismatic crystals were obtained by fractional crystalliza-
tion at room temperature. The main part of the mother liquor was removed from the crystals by treatment on an unglazed clay plate. Washing with water or diluted CrO_{3} solutions is excluded because of the limited area of stability for $\mathrm{Rb}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ in the three-component system.

The amount of chromium in the samples was determined by titration with thiosulphate. The percentage by weight of chromium found in different fractions was in the range $36 \cdot 4 \pm 0 \cdot 2$ (calculated value $35 \cdot 4$). The density of the compound was determined from the loss of weight in diethyl phthalate, with a technique developed by Hörlin, Kihlborg \& Niklewski. The observed density $3.01 \pm 0.01 \mathrm{~g} \mathrm{~cm}^{-3}$ is in good agreement with the calculated value $3.033 \mathrm{~g} \mathrm{~cm}^{-3}$ for four formula units per cell. The deviations of the observed values for the chromium content and the density from the calculated values obviously arise from the difficulties in totally removing the mother liquor from the crystals.

The powder photographs were taken in a GuinierHägg focusing camera with $\mathrm{Cu} K \alpha_{1}$ radiation, $\lambda=$ $1.54050 \AA$, and potassium chloride, $a\left(20^{\circ} \mathrm{C}\right)=6.2919 \AA$ as an internal standard. The refinement of the cell parameters ($c f$. Table 1) was performed by the method of least squares. The powder pattern is listed in Table 2.

Table 1. Crystal data for $\mathrm{Rb}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$
Space group: $P 2_{\mathrm{I}} / c$ (No. 14)
$a=17.624$ (2), $b=7.688$ (2), $c=9.492$ (2) $\AA, \beta=91.95^{\circ}$ (1), $V=1285 \cdot 4 \AA^{3}$ and $Z=4$.

Table 2. Powder pattern of $\mathrm{Rb}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ $\mathrm{CuK} \alpha_{1}$ radiation, $\lambda=1 \cdot 54050 \AA$

The crystal used for the X-ray diffraction work had the dimensions $0.11 \times 0.12 \times 0.11 \mathrm{~mm}$. The X-ray intensity data were collected on a Siemens automatic 4-circle diffractometer (Nb -filtered Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$) with the b axis parallel to the φ (gonio-meter-head) ay is, by a scintillation counter with a pulseheight analvser. The instrument was operated in the $\theta-2 \theta$ mode with the five-values method (scan range $-\Delta \theta=0 \cdot 40+0 \cdot 25 \tan \theta ;+\Delta \theta=0 \cdot 40+0 \cdot 40 \tan \theta$). Altogether, 4378 lattice points within $\theta \leq 30^{\circ}$ were measured and two standard reflexions were checked after every 23 rd measurement.

Corrections for Lp and absorption effects ($\mu=114.0$ cm^{-1}) were applied to the data with the program DATA PH (Coppens, Leiserowitz \& Rabinovich, local version by I. Carlbom).
The Gaussian integration method was used with $10 \times 12 \times 10$ grid points. The transmission factors varied between 0.29 and $0 \cdot 38$. The scattering factors for Rb^{+}, Cr^{3+}, and O^{-}were taken from McMaster, Kerr del Grande, Mallett \& Hubbell (1969) and Δf^{\prime} and $\Delta f^{\prime \prime}$ values for anomalous dispersion from International Tables for X-ray Crystallography (1962). The calculations were performed on the IBM 360/75 and IBM 1800 computers. The programs used are briefly described elsewhere (cf. Löfgren, 1973).

Determination of the structure

The Weissenberg photographs indicated monoclinic symmetry with the following reflexions systematically missing:

$$
\begin{aligned}
& h 0 l \text { for } l=2 n+1 \\
& 0 k 0 \text { for } k=2 n+1
\end{aligned}
$$

The only space group with these extinctions is $P 2_{1} / c$ (No. 14). The appearance of the Patterson function excluded for the metal atoms all point positions except the general position $4(e): \pm\left(x, y, z ; \bar{x}, \frac{1}{2}+y, \frac{1}{2}-z\right)$ From the Harker section at $v=\frac{1}{2}$, it was possible to derive approximate x and z parameters for the metal atoms. These were refined by the method of least squares versus 71 observed $h 0 l$ reflexions. After three cycles of refinement the conventional R index defined by $R=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \Sigma\left|F_{o}\right|$ was $0 \cdot 19$. From several trials, tentative y parameters for the metal atoms were derived from the three-dimensional Patterson function. Only one model gave a satisfactory explanation of all main peaks. The metal positions were tested and refined, and the oxygen atoms were also located by successive electron density calculations which finally included 1964 independent reflexions.
The positions of all atoms, their individual isotropic temperature factors and the scale factor were refined with the full-matrix least squares program LINUS (Busing, Martin \& Levy, local version by I. Carlbom). After four cycles the R index dropped to 0.071 . When corrections for secondary extinction and anisotropic temperature factors for the metal atoms were introduced the R value was 0.054 . Introduction of anisotropic temperature factors for all atoms reduced the R index to 0.038 . The weighted R_{w} value, defined by the expression $R_{w}=\left(\sum w \Delta^{2}\right)^{1 / 2} /\left(\sum w\left|F_{o}\right|^{2}\right)^{1 / 2}$, was then 0.048 . Only the 2089 independent reflexions with $\sigma\left(\left|F_{o}\right|\right) /\left|F_{o}\right| \leq$ $0 \cdot 125$ were included in the refinement. The structure factors were weighted according to the formula

$$
w=\left(\sigma\left|F_{o}\right|^{2}+a+b\left|F_{o}\right|^{2}+c\left|F_{o}\right|^{4}\right)^{-1}
$$

with $a=2 \cdot 5, b=10^{-4}$ and $c=5 \times 10^{-8}$. The final atomic parameters with their standard deviations are listed in

Table 3, and observed and calculated structure factors in Table 4.

Description and discussion of the structure

The structure of $\mathrm{Rb}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ consists of Rb^{+}and $\mathrm{Cr}_{4} \mathrm{O}_{13}^{2-}$ ions (Fig. 1). The latter are composed of four CrO_{4} tetrahedra joined by shared corners (Fig. 2).

The thermal parameters are given in Table 3 and the numerical values of the root mean square displacements in Table 5. Fig. 2 is a pictorial representation of the thermal vibrations of the atoms within the tetrachromate ion. On the whole the thermal vibrations of the non-bridging oxygens are larger than those of the bridge oxygens $\mathrm{O}(4), \mathrm{O}(7)$ and $\mathrm{O}(10)$. The average r.m.s. radial thermal displacement values are $0.303 \AA$

Table 3. Final coordinates and anisotropic thermal parameters $\beta_{i j}$ with standard deviations resulting from

 the least-squares refinementThe $\beta_{l J}$ values given are defined by the temperature factor $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} k l\right)\right]$. $\beta_{l j}$ values for Rb and Cr are $\times 10^{5}$ and for $\mathrm{O}, \times 10^{4}$.

	x	y	z		β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
$\mathrm{Rb}(1)$	0.06994 (5)	$0 \cdot 83521$ (10)	$0 \cdot 321961{ }^{\text {(8) }}$	Rb (1)	229 (3)	984 (14)	646 (9)	- 52 (5)	32 (4)	39 (9)
Rb (2)	$0 \cdot 42448$ (5)	$0 \cdot 35928$ (10)	$0 \cdot 18377$ (9)	$\mathrm{Rb}(2)$	233 (3)	828 (13)	693 (9)	-29 (4)	17 (4)	-27 (9)
$\mathrm{Cr}(1)$	0.08775 (7)	$0 \cdot 31625$ (16)	0.44064 (14)	$\mathrm{Cr}(1)$	148 (4)	698 (19)	638 (14)	20 (7)	35 (6)	-127 (14)
$\mathrm{Cr}(2)$	$0 \cdot 24852$ (7)	$0 \cdot 13870$ (17)	$0 \cdot 31910$ (13)	$\mathrm{Cr}(2)$	145 (4)	905 (21)	452 (13)	9 (7)	18 (5)	- 49 (14)
$\mathrm{Cr}(3)$	$0 \cdot 24584$ (7)	$-0 \cdot 18927$ (18)	$0 \cdot 09221$ (14)	$\mathrm{Cr}(3)$	165 (4)	1099 (23)	572 (14)	43 (8)	2 (6)	$-194(15)$
$\mathrm{Cr}(4)$	0.41749 (7)	-0.18520 (17)	0.03944 (14)	$\mathrm{Cr}(4)$	180 (4)	700 (19)	700 (15)	-11 (8)	60 (6)	85 (14)
$\mathrm{O}(1)$	0.0166 (3)	$0 \cdot 1868$ (8)	0.4246 (6)	O(1)	20 (2)	110 (11)	86 (8)	- 5 (4)	5 (3)	0 (7)
$\mathrm{O}(2)$	0.0896 (4)	0.4035 (10)	$0 \cdot 5932$ (7)	O(2)	24 (2)	213 (16)	104 (9)	14 (5)	2 (4)	$-79(10)$
$\mathrm{O}(3)$	0.0805 (4)	$0 \cdot 4609$ (9)	$0 \cdot 3204$ (8)	O(3)	22 (2)	113 (12)	150 (11)	4 (4)	3 (4)	49 (9)
$\mathrm{O}(4)$	$0 \cdot 1730$ (3)	$0 \cdot 1821$ (8)	0.4173 (6)	$\mathrm{O}(4)$	19 (2)	94 (10)	74 (7)	8 (4)	13 (3)	6 (7)
O(5)	$0 \cdot 3260$ (4)	$0 \cdot 1472$ (9)	0.4109 (7)	$\mathrm{O}(5)$	21 (2)	191 (15)	78 (7)	6 (5)	$-6(3)$	$-15(9)$
O(6)	$0 \cdot 2548$ (4)	0.2703 (9)	$0 \cdot 1940$ (6)	O(6)	29 (2)	163 (13)	65 (7)	-7 (5)	5 (3)	26 (8)
$\mathrm{O}(7)$	$0 \cdot 2371$ (3)	-0.0752 (8)	$0 \cdot 2520$ (6)	O(7)	24 (2)	116 (11)	59 (7)	3 (4)	5 (3)	- 25 (7)
$\mathrm{O}(8)$	$0 \cdot 1787$ (4)	-0.3211 (10)	0.0790 (7)	$\mathrm{O}(8)$	20 (2)	197 (15)	119 (9)	-7 (5)	1 (4)	$-57(10)$
$\mathrm{O}(9)$	$0 \cdot 2404$ (4)	-0.0583 (10)	-0.0345 (7)	O(9)	38 (3)	204 (16)	71 (8)	41 (6)	2 (4)	26 (9)
O(10)	$0 \cdot 3308$ (3)	-0.2986 (7)	0.0881 (6)	$\mathrm{O}(10)$	19 (2)	87 (9)	63 (7)	2 (3)	1 (3)	5 (6)
$\mathrm{O}(11)$	$0 \cdot 4228$ (5)	-0.0101 (10)	$0 \cdot 1270$ (10)	O(11)	45 (4)	112 (13)	217 (15)	-14 (5)	28 (6)	-71 (11)
$\mathrm{O}(12)$	0.4132 (4)	$-0.1494(12)$	-0.1251 (8)	$\mathrm{O}(12)$	37 (3)	296 (21)	88 (9)	$-8(7)$	5 (4)	84 (11)
O(13)	$0 \cdot 4888$ (3)	-0.3095 (8)	0.0779 (6)	O(13)	12 (2)	139 (11)	83 (7)	4 (4)	1 (3)	14 (8)

Table 4. Observed and calculated structure factors for $\mathrm{Rb}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$

for the bridging oxygen atoms and $0.375 \AA$ for the nonbridging oxygens. The $\mathrm{Cr}-\mathrm{O}$ distances cited as 'thermally corrected' in Table 6 have been calculated, assuming the riding-motion model, with the program ORFFE (Busing, Martin \& Levy, local version by Kihlborg \& Klug). As can be seen there is no apparent influence on the equilibrium bridge distances, the corrections not exceeding the e.s.d.'s. This is also observed in ${ }_{\infty}^{1}\left(\mathrm{CrO}_{3}\right)^{*}$ (Stephens \& Cruickshank, 1970a). On the

> * Terminology according to Machatschki (1946).

Table 5. R.m.s. components (R_{i}) of thermal displacement along the ellipsoid axes and r.m.s. radial thermal displacements (R) (in \AA)

	R_{1}	R_{2}	R_{3}	R
$\mathrm{Rb}(1)$	0.163	0.175	0.194	0.308
$\mathrm{Rb}(2)$	0.156	0.177	0.191	0.304
$\mathrm{Cr}(1)$	0.134	0.155	0.177	0.271
$\mathrm{Cr}(2)$	0.140	0.154	0.166	0.266
$\mathrm{Cr}(3)$	0.146	0.157	0.195	0.290
$\mathrm{Cr}(4)$	0.140	0.163	0.189	0.284
$\mathrm{O}(1)$	0.168	0.187	0.201	0.322
$\mathrm{O}(2)$	0.150	0.198	0.296	0.386
$\mathrm{O}(3)$	0.160	0.187	0.276	0.370
$\mathrm{O}(4)$	0.142	0.166	0.208	0.302
$\mathrm{O}(5)$	0.168	0.196	0.245	0.355
$\mathrm{O}(6)$	0.156	0.212	0.233	0.352
$\mathrm{O}(7)$	0.141	0.196	0.202	0.315
$\mathrm{O}(8)$	0.171	0.194	0.279	0.380
$\mathrm{O}(9)$	0.160	0.196	0.299	0.391
$\mathrm{O}(10)$	0.158	0.172	0.174	0.291
$\mathrm{O}(11)$	0.155	0.244	0.344	0.449
$\mathrm{O}(12)$	0.155	0.242	0.323	0.432
$\mathrm{O}(13)$	0.136	0.186	0.213	0.314

other hand the thermal motions of the non-bridging oxygens require a slight correction of the corresponding $\mathrm{Cr}-\mathrm{O}$ distances.

Fig. 1. Projection of the structure of $\mathrm{Rb}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ along [010]. Rubidium atoms are shown as circles and the different tetrachromate ions are distinguished by Roman numerals.

Table 6. Distances (\AA) and angles $\left({ }^{\circ}\right)$ within the tetrachromate ion with estimated standard deviations The O-O distances are given without correction for thermal effects.
Distances

	Uncorrected
$\mathrm{Cr}(1)-\mathrm{Cr}(2)$	$3.383(2)$
$\mathrm{Cr}(2)-\mathrm{Cr}(3)$	$3.315(2)$
$\mathrm{Cr}(3)-\mathrm{Cr}(4)$	$3.083(2)$
$\mathrm{Cr}(1)-\mathrm{O}(1)$	$1.605(6)$
$\mathrm{Cr}(1)-\mathrm{O}(2)$	$1.596(7)$
$\mathrm{Cr}(1)-\mathrm{O}(3)$	$1.596(7)$
$\mathrm{Cr}(1)-\mathrm{O}(4)$	$1.842(6)$
$\mathrm{Cr}(2)-\mathrm{O}(4)$	$1.684(6)$
$\mathrm{Cr}(2)-\mathrm{O}(5)$	$1.595(6)$
$\mathrm{Cr}(2)-\mathrm{O}(6)$	$1.567(7)$
$(1)-\mathrm{O}(2)$	$2.618(9)$
$(1)-\mathrm{O}(3)$	$2.601(9)$
$(1)-\mathrm{O}(4)$	$2.761(8)$
$(2)-\mathrm{O}(3)$	$2.627(10)$
$\mathrm{O}(2)-\mathrm{O}(4)$	$2.831(9)$
$\mathrm{O}(3)-\mathrm{O}(4)$	$2.828(9)$
$\mathrm{O}(4)-\mathrm{O}(5)$	$2.712(8)$
$(4)-\mathrm{O}(6)$	$2.691(8)$

Angles

$\mathrm{Cr}(1)-\mathrm{O}(4)-\mathrm{Cr}(2)$	$147 \cdot 2(4)$
$\mathrm{Cr}(2)-\mathrm{O}(7)-\mathrm{Cr}(3)$	$139 \cdot 3(4)$
$\mathrm{Cr}(3)-\mathrm{O}(10)-\mathrm{Cr}(4)$	$10 \cdot 5(3)$
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(2)$	$109 \cdot 8(3)$
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(3)$	$108 \cdot 7(3)$
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(4)$	$106.2(3)$
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{O}(3)$	$10 \cdot 8(4)$
$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{O}(4)$	$110 \cdot 7(3)$
$\mathrm{O}(3)-\mathrm{Cr}(1)-\mathrm{O}(4)$	$110 \cdot 5(3)$

$\mathrm{O}(4)-\mathrm{Cr}(2)-\mathrm{O}(5)$	$111.5(3)$
$\mathrm{O}(4)-\mathrm{Cr}(2)-\mathrm{O}(6)$	$111.7(3)$
$\mathrm{O}(4)-\mathrm{Cr}(2)-\mathrm{O}(7)$	$107.5(3)$
$\mathrm{O}(5)-\mathrm{Cr}(2)-\mathrm{O}(6)$	$107.8(4)$
$\mathrm{O}(5)-\mathrm{Cr}(2)-\mathrm{O}(7)$	$108.6(3)$
$\mathrm{O}(6)-\mathrm{Cr}(2)-\mathrm{O}(7)$	$109.7(3)$
$\mathrm{O}(7)-\mathrm{Cr}(3)-\mathrm{O}(8)$	$107.7(3)$
$\mathrm{O}(7)-\mathrm{Cr}(3)-\mathrm{O}(9)$	$109.6(3)$
$\mathrm{O}(7)-\mathrm{Cr}(3)-\mathrm{O}(10)$	$111.4(3)$

Uncorrected	Corrected
$1.772(6)$	1.779
$1.764(6)$	1.768
$1.560(7)$	1.576
$1.569(7)$	1.591
$1.718(6)$	1.718
$1.832(6)$	1.832
$1.583(8)$	1.621
$1.585(7)$	1.618
$1.610(6)$	1.617
$\mathrm{O}(8)-\mathrm{O}(10)$	$2.684(8)$
$\mathrm{O}(9)-\mathrm{O}(10)$	$2.679(9)$
$\mathrm{O}(10)-\mathrm{O}(11)$	$2.764(10)$
$\mathrm{O}(10)-\mathrm{O}(12)$	$2.778(9)$
$\mathrm{O}(10)-\mathrm{O}(13)$	$2.791(8)$
$\mathrm{O}(11)-\mathrm{O}(12)$	$2.621(12)$
$\mathrm{O}(11)-\mathrm{O}(13)$	$2.627(10)$
$\mathrm{O}(12)-\mathrm{O}(13)$	$2.613(10)$

$\mathrm{O}(8)-\mathrm{Cr}(3)-\mathrm{O}(9)$	$109 \cdot 2(4)$
$\mathrm{O}(8)-\mathrm{Cr}(3)-\mathrm{O}(10)$	$109 \cdot 8(3)$
$\mathrm{O}(9)-\mathrm{Cr}(3)-\mathrm{O}(10)$	$109.1(3)$
$\mathrm{O}(10)-\mathrm{Cr}(4)-\mathrm{O}(11)$	$107 \cdot 9(4)$
$\mathrm{O}(10)-\mathrm{Cr}(4)-\mathrm{O}(12)$	$108 \cdot 6(3)$
$\mathrm{O}(10)-\mathrm{Cr}(4)-\mathrm{O}(13)$	$108 \cdot 1(3)$
$\mathrm{O}(11)-\mathrm{Cr}(4)-\mathrm{O}(12)$	$111.7(5)$
$\mathrm{O}(11)-\mathrm{Cr}(4) \mathrm{O}(13)$	$110.7(4)$
$\mathrm{O}(12)-\mathrm{Cr}(4)-\mathrm{O}(13)$	$109.7(4)$

Fig.2. Configuration of the tetrachromate ion.

Fig.3. The coordination of oxygen: (a) around $\mathrm{Rb}(1)$, and (b) around $\mathrm{Rb}(2)$.

The considerable distortion of the CrO_{4} tetrahedra of the anion is obvious from the range of $\mathrm{O}-\mathrm{O}$ distances. The range is smallest, $0.18 \AA$, around $\mathrm{Cr}(4)$ and largest, $0.33 \AA$, around $\mathrm{Cr}(3)$. It is of interest to compare these data with those reported for CrO_{4} tetrahedra in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CrO}_{4}$ (Stephens \& Cruickshank, 1970b). $\mathrm{Rb}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\left(P 2_{1} / n\right), \mathrm{Rb}_{2} \mathrm{Cr}_{3} \mathrm{O}_{10}$, and CrO_{3}, where the spread of the $\mathrm{O}-\mathrm{O}$ distances is $0 \cdot 04,0 \cdot 19,0 \cdot 20-0 \cdot 24$, and $0.31 \AA$ respectively. These values indicate that the deformation of the tetrahedra increases with the numver of polyhedra forming the chain.

The Cr-O distances also reflect the distortion of the tetrahedra. There is a significant and expected difference between the bridging and non-bridging $\mathrm{Cr}-\mathrm{O}$ distances with averages of 1.77 and $1.61 \AA$ respectively and considerable spread around these averages (Table 6).

The terminal tetrahedra containing $\operatorname{Cr}(1)$ and $\mathrm{Cr}(4)$ exhibit $\mathrm{Cr}-\mathrm{O}$ (non-bridging) distances between 1.613 and $1 \cdot 621 \AA$ (mean value $1.62 \AA$). These are in fair agreement with corresponding distances in $\mathrm{Rb}_{2} \mathrm{Cr}_{3} \mathrm{O}_{10}$ (mean value $1 \cdot 60 \AA$) and in the various modifications of $\mathrm{Rb}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ of symmetries $P \overline{1}$ (Panagiotopoulos \& Brown, 1970) $C 2 / c$, and $P 2_{1} / n$ (mean value $1.62 \AA$, the latter two based on estimated thermal corrections). These $\mathrm{Cr}-\mathrm{O}$ distances show an expected shortening compared with those in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CrO}_{4}$ (mean value $1 \cdot 66$ \AA) and in $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ (Hackert \& Jacobson, 1971) with a mean value of $1.67 \AA$ (estimated thermal correction applied on the published data). The $\mathrm{Cr}-\mathrm{O}$ (non-bridging) values of the inner $\mathrm{Cr}(2)$ and $\mathrm{Cr}(3)$ tetrahedra are even shorter ($1.575-1.612 \AA$, mean value $1.59 \AA$). This shortening is also reasonable as the chromium atoms are involved in two long bonds to bridge oxygens. The two corresponding distances in CrO_{3} are 1.594 and $1.603 \AA$, mean value $1.60 \AA$.
It is observed that in $\mathrm{Rb}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ the bridge distances vary in a characteristic way along the tetrachromate ion. The longest distances, 1.846 and $1.832 \AA$, occur at the terminal tetrahedra which possess three contacts between chromium and non-bridging oxygens. Next to these long distances are the two shortest $\mathrm{Cr}-\mathrm{O}$ bridges, 1.691 and $1.718 \AA$.
The main feature of the distortion of the terminal tetrahedra is primarily due to an elongation of the $\mathrm{Cr}-\mathrm{O}$ (bridging) distances. A different situation is found in $\mathrm{K}_{2} \mathrm{~S}_{5}^{\mathrm{S}_{1} \mathrm{O}_{16}}$ (de Vries \& Mijlhoff, 1969) where the sulphur atoms of the terminal tetrahedra lie nearly in the plane of the three O (non-bridging) atoms such that the $\mathrm{O}(\mathrm{br})-\mathrm{S}-\mathrm{O}$ (non-br) angles are about 100°. The corresponding angles in the tetrachromate ion are $106 \cdot 2-110 \cdot 7^{\circ}$ close to the value $109 \cdot 5^{\circ}$ of a regular tetrahedron. The $\mathrm{Cr}-\mathrm{O}-\mathrm{Cr}$ angles are remarkably variable: $147 \cdot 2,139 \cdot 3$ and $120 \cdot 5^{\circ}$, average $135 \cdot 7^{\circ}$. In the dichromates the majority of the bridge angles are in the range $123-124^{\circ}$; in $\mathrm{Rb}_{2} \mathrm{Cr}_{3} \mathrm{O}_{10}$ they are 140 and 136°, and in $\mathrm{CrO}_{3}, 143^{\circ}$. It is interesting to note that on the whole the bridging angles seem to increase with the number of tetrahedra sharing corners. However, in
$\mathrm{Rb}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(P \overline{\mathrm{l}})$ there is a large difference between the bridge angles 123 and 138° of the two crystallographically independent ions. Thus the angles at the bridging oxygen atoms seem also influenced by the packing of the oxygen and rubidium atoms.

The rubidium-oxygen coordination is complex with no directional bond character [Fig. 3(a), (b)]. The $\mathrm{Rb}(1)$ and $\mathrm{Rb}(2)$ atoms are each surrounded by eleven oxygen atoms (Table 7). The $\mathrm{Rb}(1)-\mathrm{O}$ distances range from $2.883 \AA$ to $3.474 \AA$ and the eleven oxygen atoms belong to six different tetrachromate ions. The $\mathrm{Rb}(2)$ distances to oxygen atoms from five tetrachromate ions range from 2.887 to $3.348 \AA$. The $\mathrm{Rb}-\mathrm{O}$ coordination in $\mathrm{Rb}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ can be compared with the ten- and eleven-coordination in $\mathrm{Rb}_{2} \mathrm{Cr}_{3} \mathrm{O}_{10}$ and an eight- or ninefold coordination in the rubidium dichromates. The relatively high coordination number of the rubidium ions in rubidium tetrachromate seems to be correlated with the oxygen-rubidium ratio.

The results of the investigation of the structure of $\mathrm{Rb}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$ can be summarized as follows. Fig. 4 compares schematically the conformation of the tetrachromate ion with those of the dichromate ions, the trichromate ion, and ${ }_{\infty}^{1}\left(\mathrm{CrO}_{3}\right)$. The alkali dichromates contain ions of the shape shown in Fig. 4(a). Strontium dichromate (Wilhelmi, 1966b) contains both this type of dichromate ion, and also ions of the shape illustrated in Fig. 4(b). The latter evidently resembles the arrangement of the $\mathrm{Cr}(1)$ and $\mathrm{Cr}(2)$ tetrahedra in $\mathrm{Cr}_{3} \mathrm{O}_{10}^{2-}[\mathrm{Fig} .4(c)]$. In the tetrachromate ion [Fig. 4(d)] the chromate tetrahedra containing $\operatorname{Cr}(1), \mathrm{Cr}(2)$, and $\mathrm{Cr}(3)$ all have this type of orientation and are arranged in nearly the same way as the tetrahedra of CrO_{3} [Fig. $4(e)]$. The main difference is in the orientation of the terminal $\mathrm{Cr}(4)$-tetrahedron. The mean value of the $\mathrm{Cr}-\mathrm{O}$ (non-bridging) distances within the inner tetrahedra, $\operatorname{Cr}(2)$ and $\operatorname{Cr}(3)$, is $1.59 \AA$ and within the error limit the same as the corresponding value in CrO_{3} ($1.60 \AA$); nor is there a significant difference among the $\mathrm{Cr}-\mathrm{O}$ (bridge) distances in the inner tetrahedra (mean value $1.74 \AA$) and the value observed in $\mathrm{CrO}_{3}[1 \cdot 748$ (5) \AA §.

The structural relationships between the chromates,
dichromates, polychromates and ${ }_{\infty}^{1}\left(\mathrm{CrO}_{3}\right)$ are further discussed in a forthcoming publication.

The author is indebted to Dr K.-A. Wilhelmi for his continuous interest in this research and for many

(a)

(b)

(c)

(d)

(e)

Fig.4. Shapes and dimensions (\AA) of polychromate chains in (a) $\mathrm{Rb}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ ($P \overline{\mathrm{I}}$), (b) $\mathrm{SrCr}_{2} \mathrm{O}_{7}$ [also ions as in (a)], (c) $\mathrm{Rb}_{2} \mathrm{Cr}_{3} \mathrm{O}_{10}$, (d) $\mathrm{Rb}_{2} \mathrm{Cr}_{4} \mathrm{O}_{13}$, (e) ${ }_{\infty}^{1}\left(\mathrm{CrO}_{3}\right)$.

Table 7. $\mathrm{Rb}-\mathrm{O}$ distances (\AA) less than $4 \cdot 0 \AA$ with estimated standard deviations
The numbering of the atoms is that of Fig. 1. The vairous tetrachromate ions involved are distinguished by Roman numerals. The notation $-a,+b$, and $-c$ indicates an atom translated $-a,+b$, and $-c$ respectively.

$\mathrm{Rb}(1)-\mathrm{O}(3)$,	2.883 (7)
$\mathrm{Rb}(1)-\mathrm{O}(1)_{11(-a)}$	2.896 (6)
$\mathrm{Rb}(1)-\mathrm{O}(1)_{\text {III }}(\mathrm{a})$	2.977 (6)
$\mathrm{Rb}(1)-\mathrm{O}(2) \mathrm{IV}(+b-c)^{\text {c }}$	2.987 (7)
$\mathrm{Rb}(1)-\mathrm{O}(1)_{1(+b)}$	3.034 (6)
$\mathrm{Rb}(1)-\mathrm{O}(8)_{\text {IV }}$	3.053 (7)
$\mathrm{Rb}(1)-\mathrm{O}(3)_{\mathrm{HI}}^{(-a)}$	3.089 (7)
$\mathrm{Rb}(1)-\mathrm{O}(7)_{1(+6)}$	$3 \cdot 119$ (6)
$\mathrm{Rb}(1)-\mathrm{O}(8)_{1(+b)}$	$3 \cdot 277$ (7)
$\mathrm{Rb}(1)-\mathrm{O}(4)_{1(+b)}$	3.334 (6)
$\mathrm{Rb}(1)-\mathrm{O}(2)_{11(-a)}$	3.474 (7)
$\mathrm{Rb}(1)-\mathrm{O}(9)_{1 \mathrm{l}}$	3.891 (7)

$\mathrm{Rb}(2)-\mathrm{O}(12)_{\mathrm{IV}}$	$2.887(8)$
$\mathrm{Rb}(2)-\mathrm{O}(11)_{1}$	$2.891(8)$
$\mathrm{Rb}(2)-\mathrm{O}(13)_{1}$	$2.976(6)$
$\mathrm{Rb}(2)-\mathrm{O}(13)_{\mathrm{III}}$	$2.984(6)$
$\left.\mathrm{Rb}(2)-\mathrm{O}(13)_{\mathrm{IIt}} \mathrm{c}\right)$	$2.985(6)$
$\mathrm{Rb}(2)-\mathrm{O}(5)_{\mathrm{Iv}}(-c)$	$3.069(6)$
$\mathrm{Rb}(2)-\mathrm{O}(6)_{1}$	$3.072(7)$
$\mathrm{Rb}(2)-\mathrm{O}(1)_{\mathrm{I}}$	$3.220(6)$
$\mathrm{Rb}(2)-\mathrm{O}(5)_{\mathrm{I}}$	$3.252(7)$
$\mathrm{Rb}(2)-\mathrm{O}(11)_{\mathrm{III}}$	$3.340(9)$
$\mathrm{Rb}(2)-\mathrm{O}(12)_{\mathrm{II}-c)}$	$3.348(8)$

stimulating discussions. I wish to express my sincere gratitude to Professor Arne Magnéli for his kind interest and constructive comments on the manuscript. I am also grateful to Dr Don Koenig for revising the English text. This investigation has been supported by the Swedish Natural Science Research Council.

References

Hackert, M. L. \& Jacobson, R. A. (1971). J. Solid State $^{\text {a }}$ Chem. 3, 364-368.
Hörlin, T., Kihlborg, L. \& Niklewski, T. (1973). Chem. Commun. Univ. Stockholm. To be published.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Löfgren, P. (1971a). Acta Chem. Scand. 25, 44-58.
Löfgren, P. (1971b). Acta Chem. Scand. 25, 3893-3894.

Löfgren, P. (1973). Chemica Scripta. To be published.
Löfgren, P. \& Waltersson, K. (1971). Acta Chem. Scand. 25, 35-43.
Machatschki, F. (1946). Mh. Chem. 77, 333-342.
McMaster, W. H., Kerr Del Grande, N., Mallett, J. H. \& Hubbell, J. H. (1969). Compilation of X-ray Cross Sections, UCRL-50174 sec. II Rev. 1.
Panagiotopoulos, N. \& Brown, I. D. (1970). Canad. J. Chem. 48, 537-543.
Schreinemakers, F. A. H. \& Filippo, A. (1906). Chem. Weekbl. 3, 157-165.
Stephens, J. S. \& Cruickshank, D. W. J. (1970a). Acta Cryst. B26, 222-226.
Stephens, J. S. \& Cruickshank, D. W. J. (1970b). Acta Cryst. B26, 437-439.
Vries, R. de \& Mijlhoff, F. C. (1969). Acta Cryst. B25, 1696-1699.
Wilhelmi, K.-A. (1966a). Dissertation, Stockholm.
Wilhelmi, K.-A. (1966b). Ark. Kem. 26, 149-156.

Structure Cristalline et Moléculaire de la Phyllochrysine

Par Claude Riche*
Laboratoire de Cristallochimie, 11, quai Saint-Bernard, Tour 44, 75005 Paris, France

(Reçu le 5 mars 1973, accepté le 23 mars 1973)

Abstract

The structure of an alkaloid, phyllochrysine, has been determined by direct methods, using a new approach to the symbolic addition procedure: the phase function. The space group is $P 2_{1} 2_{1} 2_{1}$ with $a=8 \cdot 52, b=10.60, c=12.12 \AA$. The final R value is 0.097 . The molecular configuration shows that the free electron pair of the nitrogen atom is not directed towards the double bonds, as it was suggested by ultraviolet spectra.

Introduction

Au cours de ces dernières années, l'étude chimique des constituants de différentes espèces végétales de la famille des Euphorbiacées (Securinega suffraticosa, Securinega virosa, Phyllantus discoïdes) a permis de trouver un nouveau type d'alcaloïdes dont le chef de file est la sécurinine.

En 1962, la formule plane de la sécurinine et celle de son antipode optique la virosécurinine avaient été proposées (Saito, Kodera, Sugimoto, Horii \& Tamura, 1962; Nakano, Yang \& Terao, 1962). L'examen de la formule (I) montre la présence de deux éléments d'asymétrie; l'un est formé par le pont méthylénique 789; l'autre élément d'asymétrie est constitué par le carbone $C(2)$. L'atome d'azote joue également un rôle dans la distribution spatiale des atomes de la molécule par suite d'une conformation préférentielle qui peut être adoptée par son doublet libre.

[^0]
(I)

Parello, Melera \& Goutarel (1963) montraient, à l'aide de la résonance magnétique nucléaire et de certaines dégradations chimiques, qu'un nouvel alcaloïde dénommé phyllochrysine devait être considéré comme un diastéréoisomère de la sécurinine. Les deux isomères diffèrent par la configuration de l'atome de carbone $C(2)$, l'atome d'hydrogène étant en position cis ou trans par rapport au pont méthylénique.

[^0]: * Adresse actuelle: Institut de Chimie des Substances Naturelles, 91190 , Gif s/Yvette, France.

